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Syllogistic Reasoning in Fussy Logic
and its Application to Reasoning with Dispositions

L.A. Zedehe
ABSTRACT

A fuzzy syllogism in fuzzy Jogic is defined in this paper to be an inference
schema in which the major premise, the minor premise and the conclusion are
propositions containing fuzzy quantifiers. A basic fuzzy syllogism in fuizy logic is
the intersection/product syllogiem

Q A'sercB'e
Q.(A and B)' s are C'»
(0:® @QHA'e sre (Bad C)'e ,
ia which A, B and C are fuzry wedicites (e.g., young men, blonde women, ete.);

Q) and Q; are fuzzy quantifiers (e.g., most, many, elmost sll, etc.) which are

interpreted as fuzzy numbers; and Q, @ Q; is the product of Q, and Q, in fuzzy
arithmetic.

We develop several other basic syllogisms which may be employed as rules
of combination of evidence in expert systems. Among these is the conseguent

conjunction syllogism which may be expressed as the inference schema
Q,A'sare B's

Q,A's are C's

QA'sare (Band C)'o ,

ip which Q is a fuzzy number bounded from sbove by @, Q, and from below
by Oy (@, ©® Q;01), where @ ,O2radOare the extensions of the arithmetic
operators 4, — and j , respectively, to fuzty operands. Furtbermore, we show
that syllogistic reasoning in fuzzy logic provides a basis for reasoning with dispo-
sitions, that is, with propositions which are preponderantly, but not mecessarily
always, true.

¢ Usivenity of Califorsia, Berkeley, Division of Computer Science, Berkeley, Califorsia 94720, Research snp-
ported by DARPA-N0039-C-0235 aad NSF Grast ECS-8209679.
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1. Introduction

Fuizy logic may be viewed as a generalization of multivalued logic in that it provides a
wider range of tools for dealing with uncertainty and imprecision in knowledge representation,
inference and decision analysis. In particular, fuzzy logic allows (a) the use of fuzzy quantifiers
exemplified by most, scversl, many, few, many more, etc; (b) the use of furzy truth-values
exemplified by quite true, very true, mostly false, ete; (c) the use of fuzzy probabilities exemplified
by likely, wnlikely, not very likely, etc; (d) the use of furzy possibilities exemplified by guite possi-
:blc, slmost impossible, etc; and (e) the use of predicate modifiers exemplified by very, more or lees,

guite, extremely, etc.

What matters most about furzy logic is its ability to deal with fuzzy quantifiers as fuzzy
sumbers which may be manipulated through the use of fuzzy arithmetic [32]. This ability

depends in an essential way on the existence — within fuzzy logic — of the concept of cardinality

. oz, mase graomlly, the-cencept.afl mesmmse of afurzy oct. Thun, if eue accepts the clamical view

of Kolmogoroll that probability theory is a branch of measure theory, then, more generally, the
theory of fwrzy probabilities may be subsumed within fuzzy logic. This aspect of furzy logic
makes it particularly well-suited for the management of uncertainty in expert systems |33]. More
specifically, by employing a single framework for the analysis of both probabilistic and possibilis-
tic uncertainties, fuzry logic provides a systematic basis for inference from premises which are
imprecise, incomplete or not totally reliable. In this way, it becomes possible —~ as is shown in
this paper — to derive a set of rules for combining evidence through conjunction, disjunction and
cbaining. In eflect, such rules may be viewed as instances of syllogistic reasoning in fuzzy logic;
however, unlike the rules employed in most of the existing expert systems, they are not 8d hoc in

pature.

Our concern in this paper is with fuzzy syllogisms of the geperal form
p(Q)) (ry

1(Qz)
r(Q)

in which the major premise, p(Q,) , is » fuzzy proposition containing » fuzzy quantifier Q,; the
minor premise, ¢(Q.), is » fuzty proposition containing a fuzzy quantifier Q5 and the conclusion,
r(Q). is a fuzzy proposition containing » fuzzy quantiier Q. For example, the

intersection/product syllogism [32] may be expressed as
Q,A'sere B'o (1.2)

Q,(A and B)' s are C'»

QA'sere(Band C)'» ,
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where A, B and C are labels of fuzzy sets, and the fuzzy quantifier Q is given by the product of
the fuzzy quantifiers Q, and @, i.e.,

Q=@ Q. , (13)
where @ denotes the product in fuzzy arithmetic [7].! It should be noted that (3) may be viewed
as an analog of the basic probabilistic identity [15]

p(B,C/A) = p(B/A)r(C/A,B) . (1.4)
A concrete example of the intersection/product syllogism is the following
most students gre young - (1.5)
most young stydenle gre eingle
most? students are young and single

where most? denotes the product of the fuzzy quantifier mosf with iteelf.

An important application of syllogistic reasoning in furzy logic relates to what may be
regarded as reasoning with dispositions. A disposition, as its name suggests, is a proposition
which is preponderantly, but not necessarily always, true. To capture this intuitive meaning of a
disposition, we define a disposition as a proposition with implicit extremal fuzzy quantifiers, e.g.,
most, almos! sll, slmost elways, weually, rarely, few, amall fraction, etc. This definition, should be

regarded as a dizpositional definifion in the sense that it may not be true in all cases.

Examples of commonplace statements of fact which may be viewed as dispositions are:
overeating causes obesily, snow i while, glue is sticky, icy roads are slippery, etc. An example of

what appears to be a plausible conclusion drawn from dispositional premises is the following
icy roads are slippery (1.6)
ry r r
icy roods are dangerous .
As will be seen in Section 3, syllogistic reasoning with dispositions provides a basis for a formali-
sation of the type of commonsense reasoning exemplified by (1.6).

The importance of the concept of a disposition stems from the fact that what is commonly
regarded as commonsense knowledge may be viewed as a collection of dispositions [34]. It is
widely recognized that commonsense knowledge plays an essential role in human reasoning and
decision-making. Viewed in this perspective, one of the objectives of the present paper is to sug-
gest that syllogistic reasoning in fuzty logic may contribute to s better understanding of

1. More geaerally, a cirtle around an arithmetic operator represeats its extension to fussy opennads.
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commonsense reasoning and its role in decision snalysis.

8. Fussy Quantifiers, Compositionality and Robustness

As was stated ip the Introduction, the concept of a fuzy quantifier is related in an essential

way to the concept of cardirality — or, more generally, the concept of measure — of fuzzy sets.
More specifically, s fuzzy quantifier may be viewed as a fuzzy characterization of the absolute or
relative cardinality of a collection of fuzzy sets. In this sense, then, s furzy quantifier is a
:cecond-order furzy predicate.

The cardinality of a fuzzy set may be defined in a variety of ways [31]. For simplicity, we
shall employ the sigma-count for this purpose, which is defined as follows [6], [30].

Let A be a Bnite fuzzy subset of the university of discourse, U, with A expressed as
A= pfut .t pfu, (2.1)

where y,/u, ,i=1,...,n, signifies that u, is the grade of membership of u, in A and +
denotes the union. Then, the sigma-count of A is defined as the real pumber

LCount(A)=ZL,pu, , (2.2)

with the understanding that the sum may be rounded, if need be, to the pearest integer. Further-
more, one may stipulate that the terms whose grade of membership falls below a specified thres-
hold be excluded from the summation. The purpose of such an exclusion is to avoid s situation
in which a large number of terms with low grades of membership become count-equivalent to a

small pumber of terms with bigh membership.

The relative sigma-count, denoted by ECount(B/A), may be interpreted ss the proportion
of elements of B in A. More explicitly,

LCount(BMA)

ZCount(B[A) = ECouni(A)

(2.3)

where BnA , the intersection of B and A, is defined by

l‘,n,q(“)- sp(v) A palv), w €U . (24)
Thus, in terms of the membenship functions of B and A, the relative sigma-count of B in A is
given by

Bl”’(ul) A “A(“n)

ECount(B/A) = Topaln,)

(2.5)

The concept of a relative sigma-count provides a basis for interpreting the meaning of pro-
positions of the form p & Q A's are B's, eg., most young men are Aealthy. More specifically,
the fuzzy quantifier Q in the proposition Q A's sre B's may be regarded as a furzy
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characterization of the relative sigma-count of B in A, which entails that the proposition in ques-

tion may be translated as
QA'sere B'g = ECount(B/A)is Q . (2:6)

The right-band member of (2.6) implies that Q, viewed as a fuzzy number, defines the possibility
distribution of ZCount(B/A). Tbis may be expressed as the poseibility assignment eguation [30]

My=Q , (2.7)
in which the variable X is the sigma-count in question and Ily is its possibility distribution.

As was stated earlier, a fuzzy quantifier is » second-order fuzzy predicate. The interpreta-
tion expressed by (2.6) and (2.7) shows that the evaluation of a fuzzy quantifier may be reduced
to that of a first order predicate if Q is interpreted as s fuzty subset of the real line. Thus, let us
- - consider agaia the proposition p & Q A'e arc B'e, in which A and B sre furzy sets in their
respective universes of discourse, U and V; nd Q, regarded as a second-order fuzzy predicate, is .
sssumed to be characterized by its membership function ugo(X,Y), with X and Y ranging over
the fuzzy subsets of U and V. Then, based oo (2.6) and (2.7), we can define uqo(X,Y) through
the equality

“Q(X'Y) - “Q(EC‘"‘"‘(X/ Y), (28)

in the right-hand member of which Q is » unary first-order fuzzy predicate whose denotation if a
fuzzy subset of the unit interval. Consequently, in the proposition Q A's ere B's, Q may be
interpreted as (a) a second-order fuzzy predicate defined on U# X V# , where Us and V# are the }
fuzzy power sets of U and V; or (b) a first-order fuzzy predicate defined on the uuit interval [0,1].

It is useful to classify fuzzy quantifiers into quantifiers of the first kind, second kind, third L
kind, etc., depending on the arity of the second-order furzy predicate which the quantifier )
represents. Thus, Q is a fuzzy quantifier of the first kind if it provides a fuzry characterization of
the cardinality of a fuzzy set; Q is of the second kind if it provides a fuzzy characterization of the
relative cardinality of two fuzzy sets; aad Q is of the third kind if it serves the same role in rela- .
tion to three fuzzy sets. For example, the fuzzy quantifier labeled several is of the first kind; most ‘
is of the second kind; and many more in tAere are meny more A's in B's than A's in C's is of the
third kind. It should be noted that, in terms of this classification, the certainty factors employed
in such experts systems as MYCIN [23] and PROSPECTOR |8] are fuzzy quantifiers of the third r
kind. 1

The concept of a furzy quantifier gives rise to a number of other basic concepts relating to

syllogistic reasoning among which are the concepts of compositionality and robustness.

Specifically, consider a fuzzy syllogism of the general form (1.1), i.e.,

Bl ol el
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?(Q)) (2.9)

1(Q2)
r(Q)

We shall say that the syllogism is strongly compesitional if (3) @ may be expr&ed as a function
of Q, and Q, independent of the denotations of the predicates which enter into p and ¢, exclud-
ing the trivial case where Q is the unit interval; and (b) if Q, and @, are numerical quantifiers, so
:i Q. Furthermore, we shall say that the syllogism is weakly compositional if only (s) is satisfied,
in which case il @, and @Q; are pumerical quantifiers, Q may be interval-valued. As will be seen
in the sequel, in order to achieve strict compositionality, it is necessary, in general, to make some

restrictive assumptions concerning the predicates in p and g. For example, the syllogism
Q. A'sasreB's (2.10)

Q,B’'sere C'

(1@ Q)A’'s 6re (Band C)' o

is strictly compositional if B C A.

Turning to the concept of robustness, supppose that we start with a nonfuzzy syllogism of

the form
p(all) (2.11)
alall}
r(all)

an example of which is
sllA'oaare B's (2.12)
'l[ El! gre Cl!
sl A'sare C's .

The original syllogism is robuet if small perturbations in the quantifiers in p and ¢ result in »
small perturbation in the quantifier in r. For example, the syllogism represented by (2.12) is
robust if its validity is preserved when (a) the quantifier ¢l in p and ¢ is replaced by elmost ell;
and (b) the quantifier all in r is replaced by slmost almost sll. (In more concrete terms, this is
equivalent to replacing all in p and ¢ by the fuzzy number 10¢, where ¢ is a small fuzzy
aumber; and (b) replacing e in r by the fuzzy number 10 2¢.) More generally, a syllogism is

selectively robust if the above holds for perturbations in eitber the major or the minor premise,

but not pecessarily in both. For example, it may be shown that the syllogism expressed by (2.12)
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is selectively robust with respect to perturbations in the major premise but not in the minor
premise. In fact, the syllogism in question is drittle with respect to perturbations in the minor
premise in the sense that the slightest perturbation in the quantifier all in ¢ requires the replace-

ment of the quantifier ¢l in r by the vacuous quantifier none fo oll.

3. Fusszy Syllogisms and Reasoning with Dispositions

As was stated earlier, one of the basic syllogisms in fuzzy logic is the intersection/product

syllogism expressed by (1.2).
In what follows, we shall employ this syllogism as a starting point for the derivation of other
syllogisms which are of relevance to the important problem of combination of evidence in expert
systems.
A devivative wyllogiom of this type is the wnlliplicatior chaining eglisgiom ;
Q, A's arc B's ‘ (3.1)
Q,B'sare C'a
2(Q:1@ @)A's are C'a
in which >(Q,@ @) should be read as at least @, @ Q,. This syllogism is a special case of the
intersection/product syllogism which results when B C A, i.e.,
pp(u,) S pa(v) , v, €U, im=1,.. . (3.2)
For, in this case A N B = B, and since B N C is contained in C, it follows that
(@@ Q2)A's are (Band C) o =D >(Q,@ Q)A's 0re C's . (3.3)
(It is of interest to pote that if Q in the proposition Q A's ere B's is interpreted as the degree
to which A is contained in B, then the multiplicative chaining syllogism shows that, under the
assumption B C A, the fuzzy relation of fuzzy-set-containment is product transitive [28], [92].)
If, in addition to assuming that B C A, we assume that @, and @, are monotone increae-
ing (3], i.e.,
2Q=20 (3.4)
2 Q:=Q;
which is true of the fuzzy quantifier most, then i
2 (@ Q)= Q,@ @, (35) 3
and the multiplicative chaining syllogism becomes i
Q,A's are B’y (3.6)
I
3
f
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Q.B'asre C's
(Q:® Q:)A's are C's .

e Ay A0, A, -

As an illustration, we sball consider an example in which the containment relation B C A

bolds approximately, as in the proposition

p B most American cars are big . (3.7)

Thea, if
:

¢ B most big cars are ezpensive . (3.8)
we may conclude, by employing (3.6), that

2 : . '
r A most® American cers are ezpensive ,

with the understanding that most? is the product of the fuzzy number most with itself [32].

Q9 : 1t ea» readily be shown by examples that ¥ no assumptions are made regarding A, B and -
C, then the chaining inference schema

g Q, A's are B's (3.9)

:‘.‘ Q,B's are C's

\l

';; QA'agreC'ls .

S "

is mot weakly compositional, which is equivalent to saying that, in general, Q is the vacuous

quantifier none to all. However, if we assume, as done above, that B C A, then it follows from

\ the intersection/product syllogism that (3.6) becomes weakly compositional, with
..

- Q=2(0,@ Q) , (3.10)
F. and, furthermore, that (3.6) becomes strongly compositional if @, and Q, are monotone increas-
N ing.

" Another important observation relates to the robustness of the multiplicative chaining syllo-
) gism. Specifically, if we assume that

Pl

.:‘ Q‘ =10 €y

)

N Q:=10¢

_» where ¢; and ¢; are small fuzzy numbers, thep it can readily be verified that, approximately,

: Qe Q: = 1840¢ , (3.11)
.:: which establishes that the multiplicative chaining syllogism is robust. However, in the absence of
< the assumption B C A, the inference schema (3.9) is robust only with respect to perturbations in
R Q). To demonstrate this, assume that Q, == ealmosl ell and Q; = gll. Then, from the
o
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intersection/product syllogism it follows that Q == > (e/most sll). On the other hand, if we
assume that @, == aoll and Q; = slmost gll, then Q == none {o all. Thus, as was stated earlier,

the inference schema (3.9) is brittle with respect to perturbations in the minor premise.

The MPR chalning syllogism

In the preceding discussion, we have shown that the assumption B C A leads (o a weakly
compositional multiplicative chaining syllogism. Another type of assumption which also leads to
s weakly compositional chaining syllogism is that of major premise reversibility or MPR, for

short. This assumption may be expressed as the semantic equivalence
QA'sare B's «— QB'sarcA's , (3-12)
which, in most cases, will hold approximately rather than exactly. For example,

" most American cars are big +— most big cors are American .

It can be shown [34] that under the assuxf:ption of reversibility the following chaining syllo-

gism holds in an approximate sense
Q,A's are B's (3.13)
Q,B'sare C's
2( Q’O“(Qle QO1)A's are C's .

We shall refer to this syllogism as the MPR chaining syllogism. It follows at once from (3.13) that

the MPR chaining syllogism is weakly compositional and robust. A concrete instance of this syl-

logism is provided by the following example
mos! American care are big (3.14)

08t by re gre heavy )

OR(2 most©1) American cars are heavy .
The consequent conjunction syllogiam

The consequent conjunction syllogism is an example of a basic syllogism which is not a

derivative of the intersection/product syllogism. Its statement may be expressed as follows:
Q,A'sare B's (3.15)

Q,A's are C's

QA'sare(Band C)'s

where

- s " S S
RS RS AR

RO

- B A g
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00(Q,;©® Q01) < @ < 0,00, (3.16)
>From (3.16), it follows at once that the syllogism is weakly compositional and robust.
An illustration of (3.15) is provided by the example
most students sre younyg
mos! students are gingle
N Q students are single and young
where
2most &1 € Q < moat ‘ (3.17)
This expression for Q follows from (3.16) by ioting that
most @most = most
and
09 (2most ©1) = 2most S1 .
The importance of the consequent conjunction syllogism stems from the fact that it provides
s formal basis for combining rules in an expert system through a conjunctive combination of
bypotheses [33]. However, unlike such rules in MYCIN (23] and PROSPECTOR [8], the conse-
quent conjunction syllogism is weakly rather than strongly compositional. Since the combining
rules in MYCIN and PROSPECTOR are ed Aoc in nature whereas the consequent conjunction

syllogism is not, the validity of strong compositionality in MYCIN and PROSPECTOR is in need

of justification.

The antecedent conjunction syllogiam

An issue which plays an important role in the management of uncertainty in expert systems
relates to the question of bow to combine rules which have the same consequent but different

antecedents.

Expressed as ap inference schema in fuzty logic, the question may be stated as
QA'sare C's (3.18)

Q.B'o sre C'o

Q(Aand B)oere C'a ,

in which Q is the quantifier to be determined as a function of Q, and Q..

1

1
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It can readily be shown by examples that, in the absence of any assumptions about A, B,
C, @, and @, what can be said about Q is that it is the vacuous quantifier none to all. Thus, to
be able to say more, it is necessary to make some restrictive mumgtions which are satisfied, at

least approximately, in typical situations.

The commonly made assumption in the case of expert systems [8], (23] is that the items of
evidence are conditionally independent given the hypothesis. Expressed in terms of the relative

sigma-counts of A, B and C, this assumption may be written as

ECount(A (M B/C) = LCount(A/C)ECount(B/C) . (3-19)

Using this equality, it is easy to show that

LCount(C[A () B) = KECount(C/A)LCount(C[B) , (3.20)
wdese the factor £ s given by
_ __ECount(A)ECount(B)
K ECou::‘(’:{nB);C:um(C) ) (3.21)

The presence of this factor has the eflect of making the inference schema (3.18) non-
compositional. One way of getting around the problem is to employ ~ instead of the sigma-count

- a count defined by
L Count(B)

pLCount(B) = T Count(~B) (3.22)
pECount (BJA) = —=C0unt(BJA) (3.22)

ECount(~BfA) '

in which =B depotes the negation of B (or, equivalently, the complement of B, if B is inter-
preted as a fuzzy set which represents the denotation of the predicate B). These counts will be
referred to as psigma-counts (with p standing for ratio) and correspond to the odds which are
employed in PROSPECTOR [8]. Thus, expressed in words, we have

pECount(B) & Ratio of B's to non-B's (3.24)
pECount(B[A) & Ratio of B's to non-B's emong A's . (3.25)
In terms of psigma-counts, it can readily be shown that the assumption expressed by (3.19)
entails the equality
pECount(C|A () B) = pECount(C [A)pE Count(C/B)pL Count(~C) (3.26)
This equality, then, leads to what will be referred to as the sntecedent conjunction syllogiem
ratio of C's to non-C'e emong A's is R, (3.27)

ratio of C's to non-C's among B'e is R,
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retio of C's to non-C's among (A and B)'s is R, @ R,@ R,
where
Ry A ratio of C's tonon-C's

It should be noted that this syllogism may be viewed as the fuzzy logic analog of the likelihood
ratio combining rule in PROSPECTOR (8].

In the foregoing discussion, we bave focused our attention on some of the basic syllogisms in
2lnuy logic which may be employed as rules of combination of evidence in expert systems.
Anotber important function which these and related syllogisms may serve is that of providing a
basis for reasoning with dispositions, that is, with propositions in which there are implicit fuzzy

quantifiers.

The basic idea underlying this application of fuzzy syllogisms is the following. Suppose that

icy resds sre slppery
slippery roads sre dengerous .
Can we infer from these dispositions what appears to be a plausible conclusion, mamely:

icy rosds ere dangerous f (3.28)

As a first step, we have to restore the suppressed fuzzy quantifiers in the premises. For sim-
plicity, assume that the desired restoration may be accomplished by prefixing the dispositions in

question with the fuizy quantifier most, i.e.,
icy rosds are olippery — most scy roade are olippery

slippery roads are dangerous — most shppery roade are dangerous .

Next, if we assume that the proposition most slippery roads ere dangerous satisfies the major

premise reversibility condition, i.e.,
mosl scy rosds are slippery +—— mos! slippery roads are icy ,
tbep by applying the MPR chaining syllogism (3.13), we have
mos! icy roads ere oh'ppe}y (3.29)
moet elippery roade are dangerous
(2mostD1) icy roads are dangerous .
Finally, on suppressing the fuzzy quantifiers in (3.29), we are led to the chain of dispositions

fcy rooads are slippery (3.30)

Tt T T
" \'\-‘_.~)5'_.,_,.'}_,

------
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slippery roeds ere dengerous
fcy roads sre dangerous ,

which answers in the aflirmative the question posed in (3.20), with the understanding that the
implicit fuzzy quantifier in the conclusion of (3.29) is 2mostO]1 rather than most.

Concluding remark
~* This paper may be viewed as an initiation of a study of syllogistic reasoning in the context
of fuzzy logic. Such reasoning has a direct bearing on the rules of combination of evidence in
expert systems and, in addition, provides a basis for inference from commonsense knowledge by
viewing such knowledge as a collection of dispositions.
The results presented in this paper sse preliminmy in astwe. The iasne of eyfiagintic sen-
soning in fuzzy logic has many ramifications which remain to be explored.
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